Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Trichlorostannyl complexes of iridium with both P-donor and N-donor ligands: Preparation and activity as hydrogenation catalysts

Gabriele Albertin*, Stefano Antoniutti, Stefano Paganelli

Dipartimento di Chimica, Università Ca' Foscari Venezia, Dorsoduro 2137, 30123 Venezia, Italy

ARTICLE INFO

Article history: Received 21 April 2009 Received in revised form 14 May 2009 Accepted 16 May 2009 Available online 21 May 2009

Keywords: Iridium complexes Trichlorostannyl ligand Hydrogenation Pyrazole and 1,2-bipyridine Phosphines and phosphites

ABSTRACT

Bis(trichlorostannyl) complex IrH(SnCl₃)₂(PPh₃)₂ (1) was prepared by allowing the chloro-derivative IrHCl₂(PPh₃)₃ to react with SnCl₂·2H₂O in ethanol. Instead, treatment of phosphite complexes IrHCl₂P₃ [P = P(OEt)₃ and PPh(OEt)₂] with SnCl₂·2H₂O gave stannyl derivatives IrCl₂(SnCl₃)P₃ (2). Pyrazole–trichlorostannyl complexes IrHCl(SnCl₃)(HRpz)P₂ (3, 4) (R = H, 3-Me; P = PPh₃, PⁱPr₃) were prepared by allowing chloro-derivatives IrHCl₂(HRpz)P₂ to react with SnCl₂·2H₂O. 1,2-Bipyridine-trichlorostannyl complexes IrHCl₂(SnCl₃)(bpy)P (5) (P = PPh₃, PⁱPr₃) were also prepared. Complexes 1–5 were characterised spectroscopically (IR, ¹H, ³¹P, ¹¹⁹Sn NMR) and a geometry in solution was also established. The trichlorostannyl iridium complexes were evaluated as catalyst precursors for the hydrogenation of 2-cyclohexen-1-one and cinnamaldehyde. The influence of the stannyl group, as well as the steric hindrance of both N-donor and P-donor ligands in the catalytic activity of the complexes is discussed.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Stannyl complexes [M]-SnX₃ and [M]-SnR₃ (X = halogen, R = alkyl or aryl group) of transition metals have been extensively studied in recent years [1–3], both for the variety of reactions they may undergo, including ligand-substitution at both metal and tin centres, and because the introduction of a stannyl ligand may modify the properties of complexes and often improve their catalytic activity [4].

However, despite the large number of stannyl complexes prepared, relatively few involve iridium as a metal centre [5], although several complexes of this metal have shown interesting catalytic properties.

We are interested in the chemistry of stannyl complexes of transition metals and have recently reported [6] the synthesis and reactivity of chloro-, hydride- and organo-stannyl complexes of Mn(I), Re(I), Ru(II) and Os(II) of the type $M(SnR_3)(CO)_nL_{5-n}$ (M = Mn, Re; n = 2, 3), $M(SnR_3)(Tp)L(PPh_3)$ and $M(SnR_3)(Cp)L(PPh_3)$ (M = Ru, Os; R = Cl, H, Me, ArC=C; L = phosphite). We have now extended these studies to iridium(III) in order to test whether new stannyl group can change their catalytic properties. The synthesis of mixed-ligands stannyl complexes of Ir(III) and some studies on their catalytic activity in the hydrogenation of 2-cyclohexen-1-one and cinnamaldehyde are reported in this paper.

2. Experimental

2.1. General comments

All synthetic work was carried out in an appropriate atmosphere (Ar) using standard Schlenk techniques or an inert atmosphere dry-box. Once isolated, the complexes were found to be relatively stable in air, but were stored under nitrogen at -25 °C. All solvents were dried over appropriate drying agents, degassed on a vacuum line, and distilled into vacuum-tight storage flasks. IrCl₃·3H₂O was a Pressure Chemical Co. (USA) product, used as received. Phosphite PPh(OEt)₂ was prepared by the method of Rabinowitz and Pellon [7]. Other reagents were purchased from commercial sources in the highest available purity and used as received. Infrared spectra were recorded on Nicolet Magna 750 or Perkin-Elmer Spectrum-One FT-IR spectrophotometers. NMR spectra (¹H, ³¹P, ¹¹⁹Sn) were obtained on AC200 or AVANCE 300 Bruker spectrometers at temperatures between -90 and +30 °C, unless otherwise noted. ¹H spectra are referred to internal tetramethylsilane; ${}^{31}P{}^{1}H$ chemical shifts are reported with respect to 85% H₃PO₄, and ${}^{119}Sn$ with respect to Sn(CH₃)₄, and in both cases downfield shifts are considered positive. COSY, HMQC and HMBC NMR experiments were performed with standard programs. The SWAN-MR and INMR software packages [8] were used to treat NMR data. The conductivity of 10⁻³ mol dm⁻³ solutions of the complexes in CH₃NO₂ at 25 °C was measured on a Radiometer CDM 83. Elemental analyses were determined in the Microanalytical Laboratory of the Dipartimento di Scienze Farmaceutiche, University of Padova (Italy).

^{*} Corresponding author. Fax: +39 041 234 8917.

E-mail address: albertin@unive.it (G. Albertin).

⁰⁰²²⁻³²⁸X/\$ - see front matter @ 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2009.05.019

2.2. Synthesis of precursor compounds

The chlorocomplex precursors *mer*- and *fac*-IrHCl₂(PPh₃)₃, IrHCl₂(PⁱPr₃)₂, IrHCl₂(HRpz)P₂ (P = PPh₃, PⁱPr₃; R = H, 3-Me), IrHCl₂P₃ [P = P(OEt)₃, PPh(OEt)₂] and the aryltriazenide IrHCl(η^{2} -1,3-PhNNNPh)(PPh₃)₂ were prepared following previously reported methods [9–13].

2.2.1. $IrHCl_2(bpy)P(P = PPh_3, P^iPr_3)$

In a 50-mL three-necked round-bottomed flask were placed 0.68 mmol of the appropriate precursor IrHCl₂P₃, an excess of 2,2'-bipyridine (1.0 mmol, 0.16 g) and 15 mL of 1,2-dichloroethane. The resulting solution was refluxed for 3 h and then the solvent removed under reduced pressure. The oil obtained was triturated with ethanol (3 mL) giving a yellow solid which was filtered and crystallised from CH_2Cl_2 and ethanol; yield $\geq 30\%$ for P = PPh₃, \geq 75% for P = PⁱPr₃. IrHCl₂(bpy)(PPh₃): Anal. Calc. for C₂₈H₂₄Cl₂IrN₂P: C, 49.27; H, 3.54; Cl, 10.39; N, 4.10. Found: C, 49.49; H, 3.63; Cl, 10.12; N, 4.05%. ¹H NMR (CD₂Cl₂, 25 °C) δ (ppm): 9.45–7.35 (m, 23H, Ph+bpy), -19.73 (d, 1H, $J_{HP}^{1.31} = 18$ Hz, IrH). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C) δ (ppm): 6.7 (s). IrHCl₂(bpy)(PⁱPr₃): Anal. Calc. for C₁₉H₃₀Cl₂IrN₂P: C, 39.31; H, 5.21; Cl, 12.21; N, 4.83. Found: C, 39.54; H, 5.13; Cl, 12.45; N, 4.70%. IR (KBr, cm⁻¹): 2229 (s) $v_{\rm IrH}$. ¹H NMR (CD₂Cl₂, 25 °C) δ (ppm): 9.47–7.48 (m, 8H, bpy), 2.70 (m, 3H, CH), 1.41, 1.37 (d, 18H, CH₃), -25.25 (d, 1H, $J_{1H^{31}P}$ = 18 Hz, IrH). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C) δ (ppm): 1.20 (s).

2.3. Synthesis of complexes

2.3.1. $IrH(SnCl_3)_2(PPh_3)_2$ (1)

In a 25-mL three-necked round-bottomed flask were placed 0.30 g (0.29 mmol) of IrHCl₂(PPh₃)₃, 0.65 g of SnCl₂·2H₂O (2.9 mmol) and 25 mL of ethanol. The resulting suspension was refluxed for 3 h and then the volume was reduced to about 10 mL by evaporation of the solvent under reduced pressure. The pale yellow solid formed was filtered and crystallised from CH₂Cl₂ and ethanol; yield \geq 75%. Anal. Calc. for C₃₆H₃₁Cl₆IrP₂Sn₂: C, 37.02; H, 2.68; Cl, 18.21. Found: C, 37.24; H, 2.80; Cl, 18.46%. IR (KBr, cm⁻¹): 2126 (m) v_{IrH}. ¹H NMR (CD₂Cl₂, 25 °C) δ (ppm): 7.44–6.95 (m, 30H, Ph), -12.86 (t, 1H, IrH); (-70 °C) ABX spin syst, δ_{M} -12.64, J_{AX} = 9.5, J_{BX} = 10.0, $J_{1H^{119}Sn1}$ = 97.1, $J_{1H^{119}Sn2}$ = 960.8, $J_{1H^{117}Sn}$ = 92.0, $J_{1H^{117}Sn}$ = 917.7 Hz. ³¹P{¹H} NMR (CD₂Cl₂, 25 °C,) δ (ppm): -3.29 s, br; (-70 °C) AB, δ_{A} -1.39, δ_{B} -5.66, J_{AB} = 13.2. ¹¹⁹Sn{¹H} NMR (CD₂Cl₂, -70 °C) δ (ppm): ABM1, δ_{M1} -395.8, J_{AM1} = 2564.5, J_{BM1} = 295.0; ABM2, δ_{M2} -421.7, J_{AM2} = 183.0, J_{BM2} = 2526.0.

2.3.2. $IrCl_2(SnCl_3)P_3(2) [P = P(OEt)_3(a), PPh(OEt)_2(b)]$

In a 25-mL three-necked round-bottomed flask were placed 0.2 mmol of the appropriate hydride IrHCl₂P₃, an excess of SnCl₂·2H₂O (2.0 mmol, 0.45 g) and 10 mL of ethanol. The resulting solution was stirred at room temperature for 3 h and the yellow solid formed was filtered and crystallised from CH₂Cl₂ and ethanol; yield $\ge 90\%$. Anal. Calc. for $C_{18}H_{45}Cl_5IrO_9P_3Sn$ (**2a**): C, 21.91; H, 4.60; Cl, 17.97. Found: C, 21.76; H, 4.52; Cl, 17.75%. IR (polyethylene, cm⁻¹): 333, 310 (m) ν_{IrCl}. ¹H NMR (CD₂Cl₂, 25 °C) δ (ppm): 4.33 (m, 18H, CH₂), 1.34, 1.33 (t, 27H, CH₃). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C) δ (ppm): A₂B spin syst, δ_A 56.6, δ_B 45.9, J_{AB} = 34.3, $J_{^{31}H^{119}Sn}$ = 360.1, $J_{31H^{117}Sn}$ = 342.6, $J_{31H^{119}Sn}$ = 6107.0, $J_{31H^{117}Sn}$ = 5839.2 Hz. Anal. Calc. for C₃₀H₄₅Cl₅IrO₆P₃Sn (**2b**): C, 33.28; H, 4.19; Cl, 16.37. Found: C, 33.40; H, 4.33; Cl, 16.55%. ¹H NMR (CD₂Cl₂, 25 °C) δ (ppm): 7.92– 6.87 (m, 15H, Ph), 4.32-3.96, 3.73-3.43 (m, 12H, CH₂), 1.33, 1.14 (t, 18H, CH₃). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C) δ (ppm): A₂B, δ _A 83.9, $\delta_{\rm B}$ 74.2, $J_{\rm AB}$ = 24.8, $J_{^{31}{\rm H}^{117}{\rm Sn}}$ = 280.8, $J_{^{31}{\rm H}^{117}{\rm Sn}}$ = 4948.0. ¹¹⁹Sn{¹H} NMR (CD₂Cl₂, 25 °C) δ (ppm): A₂BM, δ_{M} –535.0, J_{AM} = 293.8, J_{BM} = 5177.6.

2.3.3. $IrHCl(SnCl_3)(HRpz)P_2$ (**3**, **4**) [R = H (**a**), 3-Me (**b**); $P = PPh_3$ (**3**), P^iPr_3 (**4**)]

In a 50-mL three-necked round-bottomed flask were placed 0.5 mmol of the appropriate chlorocomplex IrHCl₂(HRpz)P₂, an excess of SnCl₂·2H₂O (5 mmol, 1.13 g) and 25 mL of ethanol. The resulting suspension was refluxed for 3 h and then the volume was reduced to about 10 mL by evaporation of the solvent under reduced pressure. The pale yellow solid formed was filtered and crystallised from CH_2Cl_2 and ethanol; yield $\ge 75\%$. Anal. Calc. for C₃₉H₃₅Cl₄IrN₂P₂Sn (**3a**): C, 44.76; H, 3.37; Cl, 13.55; N, 2.68. Found: C, 44.54; H, 3.23; Cl, 13.77; N, 2.55%. IR (KBr, cm⁻¹): 3265 (m) v_{NH}, 2308 (w) v_{IrH} . ¹H NMR (CD₂Cl₂, 25 °C) δ (ppm): 10.70 (s, br, 1H, NH), 7.70-7.31 (m, 30H, Ph), 7.15 (s, br, 1H, H5 Hpz), 6.48 (s, br, 1H, H3 Hpz), 5.92 (t, 1H, H4 Hpz), -20.58 (t, 1H, $J_{1_{H^{31}P}} = 11.1$, $J_{1H^{119}Sn} = 197.1, J_{1H^{117}Sn} = 189.1 \text{ Hz}, \text{ IrH}.$ ³¹P{¹H} NMR (CD₂Cl₂, 25 °C) δ (ppm): A₂, -0.14 (s, $J_{31H^{117}Sn} = 228.0$). ¹¹⁹Sn{¹H} NMR $(CD_2Cl_2, 25 \circ C) \delta$ (ppm): A₂M, δ_M -651.9, J_{AM} = 239.5. Anal. Calc. for C₄₀H₃₇Cl₄IrN₂P₂Sn (**3b**): C, 45.31; H, 3.52; Cl, 13.37; N, 2.64. Found: C, 45.49; H, 3.42; Cl, 13.22; N, 2.76%. IR (KBr, cm⁻¹): 3270 (m) $v_{\rm NH}$, 2153 (m) $v_{\rm IrH}$. ¹H NMR (CD₂Cl₂, 25 °C) δ (ppm): 10.23 (s, br, 1H, NH), 7.70-7.27 (m, 30H, Ph), 6.97 (s, br, 1H, H5 Hpz), 5.68 (s, br, 1H, H4 Hpz), 1.55 (s, 3H, CH₃), -20.52 (t, 1H, $J_{1H^{31}P} = 11.1$, $J_{1H^{119}Sn} = 195.3, J_{1H^{117}Sn} = 187.2, IrH). {}^{31}P{}^{1}H} NMR (CD_2Cl_2, 25 °C), \delta$ (ppm): A₂, -0.89 (s, $J_{31H^{117}Sn} = 227.5). {}^{119}Sn{}^{1}H} NMR (CD_2Cl_2, 25 °C), \delta$ 25 °C) δ (ppm): A₂M, δ_{M} –645.6, J_{AM} = 237.0. Anal. Calc. for C₂₁H₄₇Cl₄IrN₂P₂Sn (**4a**): C, 29.94; H, 5.62; Cl, 16.84; N, 3.33. Found: C, 29.83; H, 5.75; Cl, 16.70; N, 3.26%. IR (KBr, cm⁻¹): 3285 (m) v_{NH}, 2071 (m) v_{IrH} . ¹H NMR (CD₂Cl₂, 25 °C) δ (ppm): 10.20 (s, br, 1H, NH), 7.12 (s, br, 1H, H5 Hpz), 6.50 (m, 2H, H4+H3 Hpz), 2.75 (m, 6H, CH phos), 1.54, 1.48 (d, 36H, CH₃), -14.17 (t, 1H, $J_{^{1}H^{^{3}1P}}$ = 16.0, $J_{1H^{119}Sn} = 49.0, J_{1H^{117}Sn} = 47.5, \text{ IrH}. {}^{31}P{}^{1}H{} \text{NMR (CD}_2Cl_2, 25 \,^{\circ}C,) \delta$ (ppm): A₂, 31.8 (s, $J_{31P^{117}Sn} = 173.5$). ${}^{119}Sn{}^{1}H{} \text{NMR (CD}_2Cl_2, 25 \,^{\circ}C)$ δ (ppm): A₂M, δ_{M} –400.6, J_{AM} = 182.0.

2.3.4. $IrHCl(SnCl_3)(bpy)P(5) [P = PPh_3(a), P^iPr_3(b)]$

In a 50-mL three-necked round-bottomed flask were placed 0.42 mmol of the appropriate complex precursor IrHCl₂(bpv)P $(P = PPh_3, P^iPr_3)$, an excess of SnCl₂·2H₂O (6.0 mmol, 1.35 g) and 40 mL of ethanol. The resulting suspension was refluxed for 4 h and then the volume reduced to about 15 mL by evaporation of the solvent under reduced pressure. An orange solid separated out which was filtered and crystallised from CH₂Cl₂ and ethanol; yield \geq 70%. Anal. Calc. for C₂₈H₂₄Cl₄IrN₂PSn (**5a**): C, 38.56; H, 2.77; Cl, 16.26; N, 3.21. Found: C, 38.73; H, 2.65; Cl, 16.07; N, 3.32%. IR (KBr, cm⁻¹): 2186 (m) $v_{\rm IrH}$. ¹H NMR (CD₂Cl₂, 25 °C) δ (ppm): 9.42–7.21 (m, 23H, Ph+bpy), -19.45 (d, 1H, $J_{1H^{31}P}$ = 21.0, $J_{1H^{119}Sn} = 102.7, J_{1H^{117}Sn} = 98.6$ Hz, IrH). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C) δ (ppm): A, -2.20 (s, $J_{^{31}H^{117}Sn}$ = 198.0). ¹¹⁹Sn{¹H} NMR (CD₂Cl₂, 25 °C) δ (ppm): AM, δ_M –328.4, J_{AM} = 206.0. Anal. Calc. for C₁₉H₃₀Cl₄IrN₂PSn (**5b**): C, 29.63; H, 3.93; Cl, 18.41; N, 3.64. Found: C, 29.45; H, 3.89; Cl, 18.64; N, 3.53%. IR (KBr, cm⁻¹): 2148 (m) v_{IrH}. ¹H NMR (CD₂Cl₂, 25 °C) δ (ppm): 9.74–7.31 (m, 8H, bpy), 2.28 (m, 3H, CH phos), 1.22, 1.17, 0.94 0.90 (d, 18H, CH₃), -18.44 (d, 1H, $J_{1_{H^{31}P}} = 15.8$, $J_{1_{H^{119}Sn}} = 114.6$, $J_{1_{H^{117}Sn}} = 110.7$, IrH). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C,) δ (ppm): A, 14.3 (s, $J_{31p117Sn} = 3475$). ¹¹⁹Sn{¹H} NMR (CD₂Cl₂, 25 °C) δ (ppm): AM, δ_{M} –280.3, J_{AM} = 3637.

2.3.5. General procedure for hydrogenation experiments

A 150-mL stainless steel reaction vessel was charged, under a nitrogen purge, with 5.2 mmol of substrate, 0.0104 mmol of the catalytic precursor and 5 mL of solvent. The reactor was then pressurised with 50 atm of hydrogen, heated at 80-100 °C for the due time (see Tables 1 and 2), cooled to room temperature and the gas allowed to vent off. For analytical purposes, the target products were recovered from the reaction mixture by flash silica gel chromatography (*n*-hexane/ether, 8/2).

Table 1

Hydrogenation of 2-cyclohexen-1-one catalysed by iridium complexes.

Run	Cat.	T (°C)	Conv. (%)	B yield (%
1	IrHCl ₂ (Hpz)(PPh ₃) ₂	80	100	100
2	IrHCl(SnCl ₃)(Hpz)(PPh ₃) ₂ (3a)	80	69.0	69.0
3	IrHCl(SnCl ₃)(Hpz)(PPh ₃) ₂ (3a)	100	94.6	94.6
4	IrHCl ₂ (Hpz)(P ⁱ Pr ₃) ₂	80	5.6	5.6
5	$IrHCl(SnCl_3)(Hpz)(P^iPr_3)_2$ (4a)	80	-	-
6	$IrHCl(SnCl_3)(Hpz)(P^iPr_3)_2$ (4a)	100	1.0	1.0
7	IrHCl ₂ (H-3-Mepz)(PPh ₃) ₂	80	-	-
8	IrHCl(SnCl ₃)(H-3-Mepz)(PPh ₃) ₂ (3b)	80	-	-
9	IrHCl(SnCl ₃)(H-3-Mepz)(PPh ₃) ₂ (3b)	100	4.4	4.4
10	$IrCl_2(SnCl_3)[P(OEt_3)]_3$ (2a)	80	57.5	57.5

2-Cyclohexen-1-one = 5.2 mmol; catalyst = 0.0104 mmol; substrate/catalyst (molar ratio) = 500/1; toluene = 5 mL; p(H₂) = 50 atm; reaction time = 22 h.

3. Results and discussion

3.1. Preparation of complexes

Both *mer*- and *fac*-iridium(III) complexes $IrHCl_2(PPh_3)_3$ [9] react with $SnCl_2 \cdot 2H_2O$ to give hydride-bis(trichlorostannyl) derivative $IrH(SnCl_3)_2(PPh_3)_2$ (1), which was isolated in good yield and characterised (Scheme 1).

The reaction proceeds with the insertion of $SnCl_2$ into both Ir–Cl bonds of the starting complex and concurrent loss of one triphenylphosphine, to yield pentacoordinate final derivative **1**.

Related hydride complexes $IrHCl_2P_3$ [12] [P = P(OEt)_3 and PPh(OEt)_2] also react with $SnCl_2 \cdot 2H_2O$, but in this case the reaction gives exclusively dichloro(trichlorostannyl) complexes $IrCl_2(SnCl_3)P_3$ (2), as shown in Scheme 2.

No loss of phosphite was observed, and the reaction seemed to proceed only with substitution of the hydride by the $SnCl_3^-$ group, giving final dichloro complex **2**. Its formation was somewhat unexpected, in view of the results obtained with $IrHCl_2(PPh_3)_3$ (Scheme 1), but was explained on the basis of the initial insertion of $SnCl_2$ into one Ir–Cl bond to give the intermediate $IrHCl(SnCl_3)P_3$, in which the $SnCl_3$ group may be *trans* to the hydride. The well-known *trans* labilising effect [14] of $SnCl_3$, in the presence of excess $SnCl_2$, should favour the substitution of hydride by one Cl^- to yield the final complex $IrCl_2(SnCl_3)P_3$ (2). However, the insertion of $SnCl_2$ into the Ir–H bond, giving $IrCl_2(SnHCl_2)P_3$, followed by chloride exchange of the tin–hydride group $SnHCl_2$ yielding **2**, cannot be excluded.

In every case, the nature of the phosphine ligand (P) is important in determining the nature of the reaction product of hydrides $IrHCl_2P_3$ with $SnCl_2\cdot 2H_2O$. Although triphenylphosphine yielded pentacoordinate hydridebis(trichlorostannyl) complex **1**, octahedral complex **2** was exclusively formed with phosphites P(OEt)₃ and PPh(OEt)₂. In the first case, the dissociation of the bulky triphenylphosphine probably favours the insertion of two $SnCl_2$ into

$IrHCl_2(PPh_3)_3 \xrightarrow{exc. SnCl_2 \cdot 2H_2O} - PPh_3$	P-Ir SnCl ₃
	1 (I)
Scheme 1.	
IrHCI₂P3 exc. SnCI₂•2H₂O	SnCl ₃ Prince Internet State
$P = P(OEt)_3 (\mathbf{a}), PPh(OEt)_2 (\mathbf{b})$	2 (II)
Scheme 2.	

two Ir–Cl bonds, yielding pentacoordinate bis(stannyl) complex **1**. Instead, with the less bulky phosphites, no dissociation of ligand was observed and octahedral monostannyl complex **2** resulted. However, the reaction with SnCl₂ probably involves several steps which lead to substitution of the hydride ligand.

Hydride complexes IrHCl₂(HRpz)P₂ [11] (R = H, 3-Me; P = PPh₃, PⁱPr₃), containing pyrazole as a ligand, also react with SnCl₂·2H₂O to give the trichlorostannyl derivatives IrHCl(SnCl₃)(HRpz)P₂ (**3**, **4**), as shown in Scheme 3.

The reaction proceeds with the insertion of $SnCl_2$ into only one Ir–Cl bond to give hydride–chlorostannyl complexes **3**, **4**, which were isolated in good yield and characterised.

The easy formation of stannyl complexes stabilised by pyrazole ligands prompted us to extend reactions with SnCl₂ to other iridium complexes containing N-donor ligands. Our attention focused on both 1,2-bipyridine (bpy) complexes IrHCl₂(bpy)P and 1,3diaryltriazenide derivatives IrHCl(1,3-PhNNNPh)P₂ ($P = PPh_3$, P^iPr_3), and results showed that, whereas the 1,2-bipyridine complexes react quickly with SnCl₂·2H₂O to give trichlorostannyl derivatives IrHCl(SnCl₃)(bpy)P (**5**) (Scheme 4), triazenide compounds do not react with SnCl₂·2H₂O and the starting complexes were recovered unchanged, even after long reaction times in refluxing ethanol (Scheme 5).

The lack of reactivity of the 1,3-triaryldiazenide complexes towards SnCl₂ was quite unexpected, and was attributed to the stoichiometry of the complexes, which contain only one chloride ligand. The precursors giving trichlorostannyl complexes do contain the dichloro-hydride moiety [IrHCl₂], which undergoes insertion by SnCl₂ to afford [Ir]–SnCl₃ species. The anionic nature

Table 2	
Hydrogenation of cinnamaldehyde catalysed by iridium complexe	s

Run	Cat.	T (°C)	Conv. (%)	F yield (%)	G yield (%)	H yield (%)
1	IrHCl ₂ (Hpz)(PPh ₃) ₂	80	33.7	33.7	-	_
2	$IrHCl(SnCl_3)(Hpz)(PPh_3)_2$ (3a)	80	17.7	17.7	-	-
3	IrHCl ₂ (Hpz)(PPh ₃) ₂	100	91.4	75.4	16.0	-
4	$IrHCl(SnCl_3)(Hpz)(PPh_3)_2$ (3a)	100	60.9	48.3	3.8	8.8
5	$IrHCl_2(Hpz)(P^iPr_3)_2$	100	52.1	43.4	6.4	2.3
6	$IrHCl(SnCl_3)(Hpz)(P^iPr_3)_2$ (4a)	100	13.1	12.1	1.0	-
7	IrHCl ₂ (H-3-Mepz)(PPh ₃) ₂	100	6.9	4.0	2.9	-
8	$IrHCl(SnCl_3)(H-3-Mepz)(PPh_3)_2$ (3b)	100	2.0	2.0	-	-
9	$IrCl_2(SnCl_3)[P(OEt_3)]_3$ (2a)	100	43.1	20.9	19.3	2.9
10	$IrH(SnCl_3)_2(PPh_3)_2$ (1)	100	71.2	36.7	7.5	26.9

Cinnamaldehyde = 5.2 mmol; catalyst = 0.0104 mmol; substrate/catalyst (molar ratio) = 500/1; toluene = 5 mL; p(H₂) = 50 atm; reaction time = 17 h.

Scheme 3.

Scheme 5.

of 1,3-triazenide yields monochloro complexes $IrHCl(1,3-PhNNNPh)P_2$, which turn out to be unreactive towards $SnCl_2$ insertion. This lack of reactivity may be due to the *trans* influence of 1,3-triazenide itself, which makes both H⁻ and Cl⁻ ligands *trans* to the PhNNNPh unreactive towards insertion of the $SnCl_2$ group.

The new trichlorostannyl complexes **1–5** were isolated as yellow or orange solids, stable in air and in solution of common organic solvents, in which they behave as non-electrolytes. Analyt-ical and spectroscopic data (IR and ¹H, ³¹P, ¹¹⁹Sn NMR) support the proposed formulations.

Variable-temperature NMR spectra indicate that pentacoordinate complex $IrH(SnCl_3)_2(PPh_3)_2$ (1) is fluxional. The singlet appearing at 20 °C in the ³¹P spectra changes as the temperature is lowered and, at -80 °C, results in a sharp quartet with the characteristic ¹¹⁹Sn and ¹¹⁷Sn satellites, due to coupling with the two tin nuclei. The spectra can be simulated with an AB model with the parameters reported in Section 2, and indicate the magnetic non-equivalence of the two phosphine ligands. The two stannyl groups are also magnetically non-equivalent, matching the presence at -80 °C of two well-separated multiplets at -421.7 and at -395.8 ppm in the ¹¹⁹Sn NMR spectrum. The multiplicity of the signals is due to coupling with the phosphorus nuclei of the two PPh₃ and the spectra can be simulated with two ABM models $(M = {}^{119}Sn)$ with the parameters reported in the Section 2. The ${}^{1}H$ NMR spectra also support the proposed formulation for 1, showing the signals of the phenyl protons of the triphenylphosphine and

Fig. 1. Observed (bottom) and calculated (top) ¹H NMR spectra, in the hydride region, of complex **1** in CD₂Cl₂ at -70 °C. The simulated spectrum was obtained using the parameters reported in Section 2.

those of the hydride ligand which, at -80 °C, appears as an ABX multiplet (X = ¹H) at -12.64 ppm (Fig. 1).

For a pentacoordinate complex, trigonal-bipyramidal (TBP) geometry may be reasonably proposed and, in the case of complex **1**, the NMR data fit one of type **I** (Scheme 1). Although square-pyramidal geometry cannot be completely excluded, literature data [15] lead us to propose a TBP structure of type **I** for our bis(tri-chlorostannyl) complex **1**.

In the far region, the IR spectrum of phosphite complex IrCl₂(SnCl₃)[P(OEt)₃]₃ **2a** shows two bands at 333 and 310 cm⁻¹ attributed to the v_{IrCl} of the two chloride ligands in a mutually *cis* position. In the temperature range between +20 and -80 °C, the ³¹P NMR spectra of both compounds **2a** and **2b** appear as A₂B multiplets, with the characteristic satellites due to coupling with ¹¹⁷Sn and ¹¹⁹Sn nuclei. However, further support for the presence of the stannyl ligand comes from the ¹¹⁹Sn NMR spectra of **2b**, which show one multiplet at -535 ppm due to coupling with ³¹P nuclei. The spectra may be simulated with an A₂BM model (M = ¹¹⁹Sn) with the parameters reported in Section 2. The values of $J_{119Sn^{31}P}$ also indicate that the SnCl₃ group is probably in *trans* position with respect to one phosphite ligand. On the basis of these data, *fac* geometry **II** (Scheme 2) is proposed for trichlorostannyl compound **2**.

The IR spectra of pyrazole complexes IrHCl(SnCl₃)(HRpz)(PPh₃)₂ **3** show a weak band at 2308–2153 cm⁻¹, attributed to the v_{IrH} of the hydride and the medium-intensity absorption at 3265– 3270 cm⁻¹ characteristic of v_{NH} of the pyrazole ligand. The ¹H NMR spectra show not only the signals of the phenyl protons of PPh₃, but also a relatively broad signal at 10.70–10.23 ppm, attributed to the NH proton of the pyrazole. Further support for the presence of this ligand comes from the signals observed at 7.15, 6.48, 5.92 (**3a**) and 6.97, 5.68 ppm (**3b**) which were correlated in a COSY experiment and attributed to the CH proton of Hpz and H-3-Mepz, respectively. A sharp triplet also appears in the low frequency region at -20.58 (3a) (Fig. 2) and -20.52 ppm (3b), with the characteristic satellites due to coupling with ¹¹⁷Sn and ¹¹⁹Sn nuclei, attributed to the hydride ligand. The high values observed for the $J_{1H^{119}Sn}$ of 197.1 (**3a**) and 195.3 Hz (**3b**) also suggest a mutually trans position for the hydride and stannyl groups. At temperatures between +20 and -80 °C, the ³¹P NMR spectra show a sharp singlet, matching the magnetic equivalence of the two phosphine ligands. The ¹¹⁹Sn NMR spectrum also appears as a sharp triplet at -651.9 (**3a**) (Fig. 3) and -645.6 ppm (**3b**), due to coupling with the two equivalent phosphorus nuclei, indicating the presence of the SnCl₃ group. On the basis of these data, *trans* geometry (III) may reasonably be proposed for pyrazole complexes 3.

The ¹H NMR spectra of the related triisopropylphosphine IrHCl(SnCl₃)(Hpz)(PⁱPr₃)₂ (**4a**) shows the pyrazole NH proton at 10.2 ppm, whereas the hydride resonance appears as a triplet at -14.17 ppm, with the satellites of ¹¹⁷Sn and ¹¹⁹Sn. In contrast with **3**, the value of $J_{1H^{119}Sn}$ of 49.0 Hz suggests a mutually *cis* position of the hydride and stannyl SnCl₃ ligands. In the temperature range between +20 and -80 °C, the ³¹P NMR spectrum shows a sharp singlet, fitting the magnetic equivalence of the two phosphine ligands; the ¹¹⁹Sn spectrum appears as a triplet at -400.6 ppm, fitting the proposed formulation for the complex. However, spec-

Fig. 2. Observed (bottom) and calculated (top) ¹H NMR spectra, in the hydride region, of complex **3a** in CD_2Cl_2 at 25 °C. The asterisk indicates an impurity. The simulated spectrum was obtained using the parameters reported in Section 2.

Fig. 3. Observed (bottom) and calculated (top) $^{119}Sn{^1H}$ NMR spectra of complex **3a** in CD₂Cl₂ at 25 °C. The asterisk indicates an impurity. The simulated spectrum was obtained using the parameters reported in Section 2.

troscopic data do not unambiguously assign a geometry to compound **4a**, and only X-ray studies will allow us to decide between geometries **IV** and **V** (Scheme 3).

The IR spectra of 2,2'-bipyridine complexes IrHCl(SnCl₃)(bpy)P **5** show a medium-intensity band at 2186–2148 cm⁻¹ attributed to the $v_{\rm IrH}$ of the hydride ligand. The ¹H NMR spectra confirm its presence, showing a doublet at –19.45 (**5a**) and –18.44 ppm (**5b**), with the characteristic satellites of ¹¹⁹Sn and ¹¹⁷Sn nuclei, whose $J_{1\rm H^{119}Sn}$ values of 102.7 (**5a**) and 114.6 Hz (**5b**) suggest a mutually *cis* position between the hydride and the SnCl₃ ligand. The values of $J_{1\rm H^{31p}}$ (21 and 15.8 Hz) also suggest a mutually *cis* position between the hydride ligands.

The ¹¹⁹Sn NMR spectrum of IrHCl(SnCl₃)(bpy)(PPh₃) **5a** appears as a doublet at -328.4 ppm, with a $J_{119Sn^{31}P}$ value of 206 Hz, suggesting a mutually *cis* position between the SnCl₃ group and the PPh₃ ligand. On the basis of these data, *cis-cis* geometry **VI** may be proposed for triphenylphosphine complex **5a**.

The ¹¹⁹Sn NMR spectrum of the related IrHCl(SnCl₃)(bpy)(PⁱPr₃) **5b** appear as a doublet at -280.3 ppm, but with a $J_{119Sn^{31}P}$ value of 3637 Hz, which suggests a mutually *trans* position of SnCl₃ with respect to phosphine. On the basis of these data, *cis-trans* geometry **VII** is proposed for triisopropylphosphine complex **5b**.

3.2. Catalytic activity

It is known that iridium(III) complexes are catalytically active in the hydrogenation of olefins [16] and, with respect to iridium(I) compounds, have higher tolerance to air oxidation; however, iridium derivatives with the metal atom in oxidation state +III are not often employed as catalyst precursors [17]. In the last few years, some iridium(III) complexes, modified with various phosphino ligands such as xyliphos or BINAP, for example, have been successfully employed in the enantioselective hydrogenation of imines [17]. To our knowledge, iridium(III) compounds containing the SnCl₃ moiety have never been used as catalyst precursors for the hydrogenation of unsaturated substrates. Based on the striking results obtained in processes catalysed by trichlorostannyl Pt(II) complexes [1b,18], it was interesting to evaluate the influence of the SnCl₃ moiety on the activity of iridium(III) catalysts. Trichlorostannyl iridium complexes were employed in the hydrogenation of the α,β -unsaturated substrates 2-cyclohexen-1-one (A) and cinnamaldehyde (E), in order to examine the selectivity of our catalytic systems towards hydrogenation of the carbon-carbon and carbonoxygen double bonds, respectively (Schemes 6 and 7).

A set of experiments was carried out on 2-cyclohexen-1-one (**A**) at 80 °C and 50 atm of H_2 for 22 h, and the results are shown in Table 1.

We first evaluated the catalytic activity of $IrHCl_2(Hpz)(PPh_3)_2$, the precursor of trichlorostannyl derivative $IrHCl(SnCl_3)$ -(Hpz)(PPh_3)₂ (**3a**). The catalytic system was very active and also selective, affording exclusively cyclohexanone (**B**) as a reaction product, in quantitative yield (run 1 of Table 1). Also complex **3a**, like the dichloro precursor, selectively furnished saturated ketone **B** but in about 70% yield, showing lower catalytic activity. When the reaction temperature was increased to 100 °C, cyclohexanone was selectively obtained to about 95%. Surprisingly, when $IrHCl(SnCl_3)(Hpz)(P^iPr_3)_2$ (**4a**) was used as the catalyst, the reactiv-

ity fell dramatically: at best, when the reaction was carried out at 100 °C, cyclohexanone was only obtained in traces (run 6 of Table 1). The dichloro complex not containing the SnCl₃ moiety also turned out to be practically inactive, affording cyclohexanone in amounts of less than 6%. Owing to the quite good results obtained with trichlorostannyl complex **3a**, containing the triphenylphosphino ligand, we tested the activity of the analogous complex IrHCl(SnCl₃)(H-3-Mepz)(PPh₃)₂ (**3b**) with a methyl group on position 3 of the pyrazole moiety. Disappointingly, this catalyst was not able to hydrogenate 2-cyclohexen-1-one and, even at 100 °C, its catalytic activity was practically negligible (runs 8 and 9 of Table 1); moreover, its direct precursor IrHCl₂(H-3-Mepz)(PPh₃)₂ did not show any catalytic activity either. Lastly, the reaction was carried out in the presence of phosphite complex IrCl₂(SnCl₃)- $[P(OEt_3)]_3$ (**2a**): this catalyst showed fairly good activity, affording exclusively cyclohexanone in about 58% yield (run 10 of Table 1).

Interesting results were obtained in the hydrogenation of cinnamaldehyde. The hydrogenation of α , β -unsaturated aldehydes, particularly cinnamaldehyde, is an important process in the manufacture of some useful fine chemicals as intermediates for the synthesis of pharmaceuticals, additives for food flavours, and valuable building blocks for fragrances [19]. Many rhodium-, ruthenium- and iridium-based catalytic systems have been employed in the selective hydrogenation of α , β -unsaturated aldehydes [20]: iridium complexes generally show lower activity but higher selectivity. Very recently, cinnamaldehyde was hydrogenated in the presence of iridium(I) complexes with tris(*ortho*-anisyl)phosphine and other bulky phosphine ligands: in all cases, these catalysts prevalently reduced the carbon–carbon double bond [20].

An initial experiment was carried out with IrHCl₂(Hpz)(PPh₃)₂ as the catalytic precursor: after 17 h at 80 °C and 50 atm of H₂, the conversion of substrate E was less than 34% and the saturated aldehyde 3-phenylpropanal (\mathbf{F}) was the only reaction product (run 1 of Table 2). When the reaction temperature was increased to 100 °C, the activity of this catalyst increased greatly, reaching about 92% of substrate conversion, but at the expense of selectivity: about 75% of 3-phenylpropanal (F) and 16% of 3-phenylpropanol (G) were also found in the reaction mixture (run 3 of Table 2). Like the results observed in the hydrogenation of 2-cyclohexen-1one, trichlorostannyl derivative IrHCl(SnCl₃)(Hpz)(PPh₃)₂ (**3a**) showed lower catalytic activity, 3-phenylpropanal only being produced in about 18% yield (run 2 of Table 2); when the reaction was carried out at 100 °C, 60.9% of substrate conversion was achieved. Also in this case, the reaction temperature also affected selectivity: besides 3-phenylpropanal (F), the prevailing reaction products, 3phenylpropanol (G) and cinnamyl alcohol (H), were formed (run 4 of Table 2).

The trichlorostannyl complex containing phosphino ligand $P^{i}Pr_{3}$ (**4a**), completely inactive towards 2-cyclohexenone hydrogenation, after 17 h at 100 °C and 50 atm of H₂ gave a quite low substrate conversion (13.1%) with more than 90% selectivity towards 3-phenylpropanal (run 6 of Table 2). The dichloro derivative precursor was more active, affording prevalently 3-phenylpropanal and small amounts of both corresponding saturated and unsaturated alcohols. Disappointing results were obtained with both complexes containing the (H-3-Mepz) moiety, being similar to the data achieved in 2-cyclohexen-1-one hydrogenation. Lastly, when phosphite complex $IrCl_2(SnCl_3)[P(OEt_3)]_3$ (**2a**) was used as catalyst, cinnamaldehyde hydrogenation afforded a mixture containing the saturated aldehyde **F** and both alcohols **G** and **H**. Unlike the case of 2-cyclohexen-1-one hydrogenation, this catalyst precursor also proved quite good at reducing the carbon–oxygen double bond, thus furnishing almost equimolecular amounts of 3-phenylpropanal (**F**) and 3-phenylpropanol (**G**) (run 9 of Table 2).

These iridium(III) complexes show interesting catalytic activity in the hydrogenation of α , β -unsaturated substrates but, contrary to our expectations, the tricholorostannyl moiety negatively affected their catalytic performance. The steric hindrance created by this bulky group certainly played a detrimental role in the catalytic cycle, lowering the yield of hydrogenation products with respect to dichloro catalyst precursors not containing the SnCl₃ unit. In addition, when the triphenylphosphine ligand was replaced by more hindered phosphino groups such as triisopropylphosphine, catalytic activity decreased greatly. The detrimental effect due to steric factors was also highlighted by the dramatic fall in activity when iridium triphenylphosphino complexes containing the H-3-Mepz moiety instead of the simple Hpz were used in the hydrogenation process. As expected, all these iridium complexes mainly reduce the carbon–carbon double bond of the α , β -unsatu– rated substrates: in particular, in the case of 2-cyclohexen-1-one hydrogenation, this peculiarity can be exploited for selective production of the corresponding saturated ketone.

Acknowledgements

The financial support of MIUR (Rome) – PRIN 2008 is gratefully acknowledged. We thank Daniela Baldan for her technical assistance.

References

- [1] (a) K.M. Mackay, B.K. Nicholson, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, vol. 2, Pergamon Press, New York, USA, 1982, pp. 1043–1114;
 - (b) M.S. Holt, W.L. Wilson, J.H. Nelson, Chem. Rev. 89 (1989) 11-49;
 - (c) M.F. Lappert, R.S. Rowe, Coord. Chem. Rev. 100 (1990) 267–292;
 (d) A.G. Davies, in: F.G.A. Stone, E.W. Abel, G. Wilkinson (Eds.),

Comprehensive Organometallic Chemistry, vol. 2, Pergamon Press, New York, USA, 1995, pp. 218–297;

- (e) A.G. Davies, Organotin Chemistry, Wiley-VCH, Weinheim, Germany, 2004; (f) W.R. Roper, L.J. Wright, Organometallics 25 (2006) 4704–4718.
- [2] (a) M. Baya, P. Crochet, M.A. Esteruelas, E. Gutierrez-Puebla, N. Ruiz, Organometallics 18 (1999) 5034–5043;

(b) C.E.F. Rickard, W.R. Roper, T.J. Woodman, L.J. Wright, Chem. Commun. (1999) 837–838;

(c) H. Adams, S.G. Broughton, S.J. Walters, M.J. Winter, Chem. Commun. (1999) 1231–1232;

(d) A.M. Clark, C.E.F. Rickard, W.R. Roper, T.J. Woodman, L.J. Wright, Organometallics 19 (2000) 1766–1774;

 (e) S. Hermans, B.F.G. Johnson, Chem. Commun. (2000) 1955–1956;
 (f) M. Turki, C. Daniel, S. Zális, A. Vlcek Jr., J. van Slageren, D.J. Stufkens, J. Am. Chem. Soc. 123 (2001) 11431–11440.

- [3] (a) N.R. Neale, T.D. Tilley, J. Am. Chem. Soc. 124 (2002) 3802–3803;
- (b) M.A. Esteruelas, A. Lledos, F. Maseras, M. Oliván, E. Oñate, M.A. Tajada, J. Tomàs, Organometallics 22 (2003) 2087–2096;
 (c) R.D. Adams, B. Captain, J.L. Smith Jr., M.B. Hall, C.L. Beddie, C.E. Webster, Inorg. Chem. 43 (2004) 7576–7578;

- (d) N.R. Neale, T.D. Tilley, J. Am. Chem. Soc. 127 (2005) 14745-14755;
- (e) R.D. Adams, B. Captain, R.H. Herber, M. Johansson, I. Nowik, J.L. Smith, M.D.
- Smith, Inorg. Chem. 44 (2005) 6346–6358; (f) T. Sagawa, K. Ohtsuki, T. Ishiyama, F. Ozawa, Organometallics 24 (2005)
- 1670-1677; (g) R.D. Adams, B. Captain, C.B. Hollandsworth, M. Johansson, J.L. Smith Jr.,
- Organometallics 25 (2006) 3848–3855; (h) M.A. Alvarez, M.E. Garcia, A. Ramos, M.A. Ruiz, Organometallics 25 (2006)
- 5374–5380; (i) B. Eguillor, M.A. Esteruelas, M. Olivan, E. Oñate, Organometallics 24 (2005) 1428–1438:
- (j) H. Braunschweig, H. Bera, B. Geibel, R. Dörfler, D. Götz, F. Seeler, T. Kupfer, K. Radacki, Eur. J. Inorg. Chem. (2007) 3416–3424;
- (k) G. Albertin, S. Antoniutti, J. Castro, S. García-Fontán, M. Noé, Dalton Trans. (2007) 5441–5452;
- (I) L. Carlton, M.A. Fernandes, E. Sitabule, Proc. Natl. Acad. Sci. 104 (2007) 6969-6973.
- [4] (a) J.N. Coupé, E. Jordão, M.A. Fraga, M. Mendes, J. Appl. Catal. A 199 (2000) 45;
 (b) S. Hermans, R. Raja, J.M. Thomas, B.F.G. Johnson, G. Sankar, D. Gleeson, Angew. Chem., Int. Ed. Engl. 40 (2001) 1211;
 - (c) G.W. Huber, J.W. Shabaker, J.A. Dumesic, Science 300 (2003) 2075;
 (d) R.D. Adams, B. Captain, M. Johansson, J.L. Smith Jr., J. Am. Chem. Soc. 127
- (d) K.D. Adams, D. Captani, M. Johansson, J.L. Shifti J., J. Ani, Chem. Soc. 12 (2005) 488–489.
- [5] (a) W. Chen, M.A. Esteruelas, M. Martín, M. Oliván, L.A. Oro, J. Organomet. Chem. 534 (1997) 95–103;
 - (b) M.A. Esteruelas, F.J. Lahoz, E. Oñate, L.A. Oro, L. Rodriguez, Organometallics 15 (1996) 823-834;
 - (c) M.A. Esteruelas, F.J. Lahoz, M. Oliván, E. Oñate, L.A. Oro, Organometallics 14 (1995) 3486–3496;
 - (d) M. Kretschmer, P.S. Pregosin, Inorg. Chim. Acta 61 (1982) 247-254;
 - (e) R. Usón, L.A. Oro, D. Carmona, M.A. Esteruelas, J. Organomet. Chem. 263 (1984) 109–120:
 - (f) T.M. Gilbert, F.J. Hollander, R.G. Bergman, J. Am. Chem. Soc. 107 (1985) 3508–3516.
- [6] (a) G. Albertin, S. Antoniutti, A. Bacchi, M. Bortoluzzi, G. Pelizzi, G. Zanardo, Organometallics 25 (2006) 4235–4237;
 - (b) G. Albertin, S. Antoniutti, J. Castro, S. García-Fontán, G. Zanardo, Organometallics 26 (2007) 2918–2930;
 - (c) G. Albertin, S. Antoniutti, J. Castro, S. García-Fontán, G. Zanardo, Organometallics 27 (2008) 2789–2794;
 - (d) G. Albertin, S. Antoniutti, A. Bacchi, G. Pelizzi, G. Zanardo, Organometallics 27 (2008) 4407-4418.

- [7] R. Rabinowitz, J. Pellon, J. Org. Chem. 26 (1961) 4623-4626.
- [8] G. Balacco, J. Chem. Inf. Comput. Sci. 34 (1994) 1235–1241. http:// www.inmr.net.
- [9] (a) S. Park, A.J. Lough, R.H. Morris, Inorg. Chem. 35 (1996) 3001–3006;
 (b) G.L. Geoffroy, R. Pierantozzi, J. Am. Chem. Soc. 98 (1976) 8054–8059;
- (c) N. Ahmad, S.D. Robinson, M.F. Uttley, J. Chem. Soc., Dalton Trans. (1972) 843-847;
- (d) R.G. Hayter, J. Am. Chem. Soc. 83 (1961) 1259;
- (e) L. Vaska, J. Am. Chem. Soc. 83 (1961) 756.
- [10] R.D. Simpson, W.J. Marshall, A.A. Farischon, D.C. Roe, V.V. Grushin, Inorg. Chem. 38 (1999) 4171–4173.
- [11] G. Albertin, S. Antoniutti, J. Castro, S. García-Fontán, E. Gurabardhi, J. Organomet. Chem. 691 (2006) 1012–1024.
- [12] G. Albertin, S. Antoniutti, D. Baldan, J. Castro, S. García-Fontán, Inorg. Chem. 47 (2008) 742–748.
- [13] K.R. Laing, S.D. Robinson, M.F. Uttley, J. Chem. Soc., Dalton Trans. (1974) 1205-1214.
- [14] (a) R.V. Lindsey Jr., G.W. Parshall, U.G. Stolberg, J. Am. Chem. Soc. 87 (1965) 658–659;
- (b) G.W. Parshall, J. Am. Chem. Soc. 88 (1966) 704-708.
- [15] G. Wilkinson, R.D. Gillard, J.A. McCleverty (Eds.), Comprehensive Coordination Chemistry, Pergamon, Oxford, UK, 1987.
- [16] (a) L.A. Oro, C. Claver (Eds.), Iridium Complexes in Organic Synthesis, Wiley-VCH, Weinheim, Germany, 2008;
 (b) G. Kohl, H. Pritzkow, M. Enders, Eur. J. Inorg. Chem. (2008) 4230. and
- references therein. [17] T. Yamagata, H. Tadaoka, M. Nagata, T. Hirao, Y. Kataoka, V. Ratovelomanana-
- Vidal, J.P. Genet, K. Mashima, Organometallics 25 (2006) 2505. and references therein.
- [18] (a) R.D. Cramer, E.L. Jenner, R.V. Lindsey Jr., U.G. Stolberg, J. Am. Chem. Soc. 85 (1963) 1691;
 - (b) H.A. Tayim, J.C. Bailard Jr., J. Am. Chem. Soc. 89 (1967) 3420;
 - (c) H. van Bekkum, J. van Gogh, G. van Minnen-Pathuis, J. Catal. 7 (1967) 292;
 - (d) R. Pietropaolo, M. Graziani, U. Belluco, Inorg. Chem. 8 (1969) 1506;
 - [e] B. Cornils, W.A. Herrmann (Eds.), Applied Homogeneous Catalysis with Organometallic Compounds, vol. 1, Wiley-VCH, Weinheim,
- Germany, 1996, and references therein. [19] K. Nuithitikul, M. Winterbottom, Chem. Eng. Sci. 59 (2004) 5439.
- [20] V.R. Landaeta, F. Lopez-Linares, R. Sanchez-Delgado, C. Bianchini, F. Zanobini, M. Peruzzini, J. Mol. Catal. A: Chem. 301 (2009) 1.